TOPwave[®] Digestion theory

Analytik Jena Sales Tools

analytikjena

Basics of sample decomposition

- Target
- Decomposition methods
- Liquid digestions
- Digestion in practice
- Summary

Target

- Quantitative determination of main and trace components
- Usually spectroscopic analysis
- Total decomposition / extraction
- Destruction of matrix to reduce interferences
- Avoiding analyte loss / contamination

Target

Time consumption of analytical procedure

Target

Sample throughput

Melting / flux

Acidic (z.B. KHSO₄, LiBO₂)

Alkaline (z.B. NaOH, Na₂CO₃)

Oxidizing (z.B. KNO₃, Na₂CO₃, Na₂O₂)

Reducing (z.B. Na, KCN)

Advantages:

- Refractory materials (ceramics, oxides)
- Simple procedure

Disadvantages:

- Excess amount of reagent (blank!)
- High salt load (matrix effects)
- Loss of volatile species (high temp.)
- Risk of contamination (open)

Wet digestion

Acidic (z.B. HCl, H₂SO₄ HF)

Alkaline (z.B. NaOH, NH₃)

Oxidizing (z.B. HNO₃, H₂O₂, HClO₄)

Reducing (z.B. HI, HBr)

Advantages

- Ultra-pure reagents available
- No additional matrix effects

Disadvantages

- Boiling point of acid mixture limits temp.-range (refractories!)
- Dangerous / toxic reagents (HF, HClO₄)

- Decomposition with gases
 - Oxidizing (z.B. O₂, Cl₂)
 - Reducing (z.B. H₂)
- Advantages
 - Fast reaction
- Disadvantages
 - Complex apparatus
 - Practice: organic samples only
 - Difficult dosage of gas (blank!)
 - Difficult quantitative analysis

- Summary
 - Wet digestion is method of choice
 - Flexible selection and dosage of reagents
 - Low risk of contamination
 - Easy handling
 - Conditions can be controlled
- Different methods
 - Open vessel with reflux (e.g. aqua regia extraction)
 - Closed high temperature vessel
 - Heating plate / -block (conventional heating)
 - Higher pressure and temperature (>300°C, >100bar)
 - Microwave heating
 - Limited to certain vessel materials, limits p / T range

Wet digestions

- Chemical decomposition of sample matrix
- Temperature accelerates reaction
 Rule of thumb: 10°C temp. Increase = double reaction rate
- Open digestion: max. temperature limited by boiling point
- Closed vessel: pressure increases boiling point
- Pressure has no influence on reaction
- Microwaves have no influence on reaction.

analytikjena

Wet digestions

- Sample preparation
 - 1. Grinding and homogenizing sample
 - 2. Weighing of one or more aliquots
 - 3. Addition of reagents
 - 4. Energy input

Wet digestions - reagents

- Nitric acid
 - Oxidizing acid: $(CH_2)_n + 2 HNO_3 \rightarrow CO_2 + 2 NO + 2 H_2O$
 - Often mixed with H₂O₂, HCl, HF, (H₂SO₄)
 - Boiling point: 122°C (HNO₃ 65%)
 - Vapor pressure: ca. 25bar at 220°C
 - Forms soluble nitrates with most elements (Exceptions: Au, Pt, Al, B, Cr, Ti, Zr)
- Nitric acid + hydrogen peroxide
 - Increases oxidizing potential: 2 H₂O₂ → 2 H₂O + O₂
 - Re-oxidation of NO to NO₃⁻ (reduces nitrous oxides)
 - Typical mixture: HNO₃: H₂O₂ = 4:1

Wet digestions - example

Digestion of milk powder

Sample: 300mg milk powder

Reagent: $5mL HNO_3 65\% + 2mL H_2O_2 30\%$

Temperature program:

Step	1	2	3	4
Temp. [°C]	145	170	190	100
Ramp [min]	2	5	2	1
Hold [min]	5	10	15	10

Result: clear solution

Wet digestions - reagents

- Hydrochloric acid
 - Not oxidizing
 - Boiling point: 84°C (HCl 32%)
 - Vapor pressure: ca. 25bar at 205°C
 - Forms soluble chlorides with many elements (Exceptions: AgCl, HgCl, TiCl, PbCl₂)
 - Dissolves salts of weak acids (carbonate, phosphate, borate)
 - Dissolution of Fe-alloys and -oxides
 - Complexes many elements (e.g. [AuCl₄]⁻, [AgCl₂]⁻ etc.)
 - Some elements form volatile chlorides (open vessel!)
 - Some metal oxides are insoluble in HCI

Wet digestions - reagents

- Aqua regia
 - HCI: $HNO_3 = 3:1$ (v:v, both conc.)
 - Forms NOCI, $2 \text{ NOCI} \rightarrow 2 \text{ NO} + \text{CI}_2$
 - Vapor pressure: ca. 25bar at 200°C
 - Dissolution of precious metals, geology
 - Must be prepared freshly!

Wet digestions - example

Aqua regia extraction of a sediment

Sample: 1g sediment

Reagent: 3mL HNO₃ 65% + 9mL HCl 37%

Temperature program:

 Step
 1
 2

 Temp. [°C]
 175
 100

 Ramp [min]
 1
 1

 Hold [min]
 10
 10

Result: clear solution with white SiO₂-precipitate

Wet digestions - reagents

- Hydrofluoric acid
 - Not oxidizing
 - Decomposes silicates: SiO₂ + 6 HF → H₂SiF₆ + 2 H₂O
 - Excess required to avoid volatile fluorides (BF₃, SiF₄, GeF₄, SeF₄)
 - Boiling point: 108°C (HF 40%)
 - Vapor pressure: ca. 25bar at 240°C
 - Mostly mixed with other acids
 - Decomposition of minerals, ores, soil
 - Decomposition of refractory ceramics and oxides (Ti, Al, Si...)
 - Complexation: B(OH)₃ + 4 HF → HBF₄ + 3 H₂O
 - F-AAS: High concentrations → Teflon-coated impact bead!

Wet digestions - example

Total dissolution of glass and quartz

Sample: 500mg glass

Reagent: 4mL HNO₃ 65% + 4mL HF 40%

Temperature program:

 Step
 1
 2

 Temp. [°C]
 200
 100

 Ramp [min]
 5
 1

 Hold [min]
 15
 10

Result: clear solution

Wet digestions - reagents

- Sulphuric acid
 - Oxidizing at high temperatures
 - Attracts water from organic compounds (wet ashing)
 - Boiling point: 340°C (H₂SO₄ 98%)
 - Vapor pressure: negligible
 - Increases boiling point (=working range) in open digestions
 - Mostly disliked in closed vessel digestions
 - Usually mixed with other acids
 - Digestion of plastics, geology
 - Insoluble sulphates of Ba, Sr, Pb, (Ca)
 - GF AAS: Graphite corrosion
 - CS AAS: SO₂- and CS- molecular bands

Wet digestions - example

Decomposition of plastics

Sample: 250mg Plastic

Reagent: $1.5\text{mL HNO}_3 65\% + 1.5\text{mL H}_2\text{SO}_4 98\%$

Temperatur program:

Step	1	2	3
Temp. [°C]	190	220	100
Ramp [min]	5	1	1
Hold [min]	20	15	10

Result: clear solution

Wet digestions - reagents

- Perchloric acid
 - Strongest oxidizer
 - Boiling point: 203°C (HClO₄ 72%)
 - Vapor pressure: ca. 25bar at 200°C
 - Explosive decomposition at 240°C !!!
 - Usually mixed with other acids
 - Open digestion: Oxidation of org. residue
 - Closed vessel: unwanted and unnecessary
 - Forms insoluble KClO₄
 - Risk of explosion! Exceptional use! Special fume hood required!

Wet digestions - reagents

- Selection of reagents
 - Organic matrices
 - Oxidizing acids / mixtures (usually HNO₃, H₂O₂)
 - Pressure generated by CO₂
 - Low sample weight, high pressure vessels
 - Inorganic matrices
 - Complecation more important than oxidation (HNO₃, HCl, HF)
 - Pure and precious metals: HCl, aqua regia, HCl / HF
 - Refractory oxides: H₂SO₄ / HCI, HNO₃ / HCI / HF
 - High temperature often required
 - Pressure increase usually only by carbonates (open pre-reaction)

- Critical parameters
 - Temperature
 - High temperature accelerates reaction
 - Limited by vapor pressure of reagents + reaction gas
 - P / T specification of vessels
 - Cycle time
 - Short cycle time increases throughput
 - Slow ramp avoids spontaneous reactions
 - Moderate conditions extend life time
 - Chemical properties of reagents
 - Must be selected according to samle / analytes
 - Reactions among reagents

Pressure build-up in a closed vessel

$$p(total) = p(CO_2) + p(acid)$$

CO₂-pressure depends on sample amount and C-content

$$p(CO_2) = 6.9 * m(C) [g] * T/V [K/mL]$$

Example:

$$V = 30mL, m(C) = 0.2g, T = 200^{\circ}C \rightarrow p(CO_2) = 22bar$$

$$V = 80 \text{mL}, \text{ m(C)} = 0.2 \text{g}, \text{ T} = 200 ^{\circ}\text{C} \rightarrow \text{p(CO}_2) = 8 \text{bar}$$

→ CO₂-partial pressure depends on vessel volume!

Pressure build-up in a closed vessel

p(acid) depends on vapor pressure of components (incl. H₂O!)

Independent from vessel volume!
(Assuming that acid concentration remains constant)

→ Acid volume must be adapted to vessel volume.

Example for pressure build-up

60mL - vessel at 200°C

500mg C generates 930mL CO₂

→ Partial pressure: 26bar

Vapor pressure HNO₃ at 200°C: ca. 10bar

→ Total pressure: ca. 36bar

- Digestion time
 - Short time = high throughput
 - More vessels = higher throughput (?)
 - Ramp must be adapted to sample reactivity
 - Excessive p / T shortens life time
 - Fast heating by μ-waves: direct heating of sample
 - Cooling: Air flow inside oven or in fume hood, water bath (external)

Sample throughput (2 sets of vessels)

Samples per run	Manual work ¹	Run time + pre-cooling ²	External cooling ³	Max. samples per day ⁴
1	4 min.	45 min.	15 min.	11
4	16 min.	45 min.	15 min.	43
8	32 min.	45 min.	15 min.	85
10	40 min.	45 min.	15 min.	107
12	48 min.	45 min.	15 min.	120
16	64 min.	45 min.	15 min.	120
24	96 min.	45 min.	15 min.	120
40	160 min.	45 min.	15 min.	120

¹ Estimated time per sample: Weighing 1.5 min.; Acid addition: 0.5 min.; Fill-up: 1 min.; Vessel cleaning: 1min.

- 2 Digestion and cooling inside oven
- 3 Cooling outside oven
- 4 Base: 8h labour day

- Open-vessel digestion with reflux
 - Working temperature limited by boiling point of acid mixture
 H₂SO₂ / H₃PO₄ to increase b.p.
 - Large amount of sample possible
 - Often insufficient quality of decomposition due to limited temperature range
 - Loss of volatile elements
 - Contamination from dust
 - Often used for geological samples (extraction with aqua regia or buffer)

- Conventionally heated pressure digestion
 - Working range up to ca. 200bar and 300°C
 - Duration: 2h several days
 - Vessel liner: PTFE-TFM, high stability, low contaminations
 - Different vessel sizes for different sample types / amounts
 - High quality of decomposition
 - No loss of volatile elements
 - Low risk of contamination
 - High safety level, easy handling
 - No process control
 - Slow heating / cooling behaviour

Heating behaviour - conventional

Open vessel digestion

- Temperature limited by boiling point
- High acid consumption
- Large sample amount possible
- Quality of decomposition not always sufficient
- Loss of volatile species
- Slow heating
- No process control

Closed vessel pressure digestion

- Max. temperature: 260-300°C
- Low acid consumption (blank!)
- Small sample amount (<1g)
- High quality of decomposition
- No loss of volatile species
- Fast heating / cooling (µ-wave)
- Pressure and temperature monitoring for reaction control
- → Acceleration of reaction by higher temperature
- → Time saving by fast heating / cooling
- → Process control by p / T based adaptive power control
- . Provides safety for reactive samples and reproducible conditions

- Properties of microwave digestions
 - Fast, direct heating of sample
 - Parallel processing of up to 24 samples
 - Advantages of a closed-vessel digestion
- Critical points
 - Homogeneous distribution of μ-waves (oven geometry)
 - Temp.- / pressure resistance of vessels
 - Transparency for µ-waves
 - Measurement and control of process parameters p, T, P
 - Venting of vessels

- Pressure vessels made of PTFE-TFM
 - Low contaminations, easy cleaning
 - Transparent for microwave radiation
 - Different pressure- and temperature ranges
 - Highest decomposition quality for most applications
 - Shortest cycle times by fast heating and cooling (10-60 min)
 - Over-pressure protection by rupture disc
 - Opening / closing without any tools
 - Gas collection system and easy venting

Microwave physics

- Different behaviour of materials
 - Metal reflects µ-waves (oven)
 - Plastics, glass, ceramics are transparent (vessels, pressure jackets)
 - Dipolar and ionic compounds absorb μ-waves (acid / sample / H₂O)
- Absorption behaviour
 - Blank digestions absorb less radiation, final temperature is lower
 - Amounts of acid and sample influence temperature
 - Homogeneous distribution of radiatrion necessary (oven, rotor)

Reaction control in real time

- 1. Solution is heated by microwaves
- Activation energy for reaction:
 CH₂ + 2 HNO₃ → CO₂ + 2 NO + 2 H₂O
- 3. Exothermic reaction generates additional heat
- 4. Microwave power is reduced to avoid overheat

Pressure vessels AJ TOPwave

Massive PTFE-TFM vessels

```
    PH 30
    PM 60
    PL 100
    PL 100
    PM 40
    PM 40
    PM 40
    CX 100
    CX 17
    QX 20
    30 mL / 80 bar (12-position rotor)
    100 mL / 25 (40) bar (12-position rotor)
    40 mL / 40 bar (24-position rotor)
    100 mL / 100 bar (8-position rotor)
    17 mL / 130 bar (liner for PL 100 / CX 100)
    QX 20
```

Multi-vial (MT-) system as insert for CX 100:
 3 x 10mL vials per CX 100

Temperature measurement

- Temperature is the most important digestion parameter
- Reaction rate / completeness of decomposition
- Internal temperature depends on sample type and amount
- → Temperature monitoring in all vessels
- → Measurement by contactless mid-IR measurement
- → Vessel material is transparent in used IR range

Summary

- Requirements to a digestion system
 - Reaction temperatures up to >250°C
 - Sample weights up to 1000 mg
 - Temperature monitoring in real-time in all vessels
 - Option: Pressure monitoring in one or more vessels
 - Process control by p / T adapted power control
 - Recording and storage of all process parameters

Summary

- Liquid digestion always method of choice
- Closed vessels improve decomposition quality due to higher temperature.
- Adaptive process control allows reproducible conditions and safe operation
- Microwave technology accelerates cycle and allows high sample throughput
- Conventionally heated digestion bombs for most difficult samples

Summary

- AJ TOPwave decomposition system
 - Up to 24 simultaneous digestions
 - Pressure vessels up to 100 mL / 100 bar
 - Temperature up to 260°C
 - Remote temperature monitoring RTM
 - Remote pressure monitoring RPM
 - Power control with SMART-Algorithm
 - Touchscreen Controller with USB and Ethernet connectors